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In this study 87 amino acids (AA.s) have been characterized by 26 physicochemical descriptor
variables. These descriptor variables include experimentally determined retention values in
seven thin-layer chromatography (TLC) systems, three nuclear magnetic resonance (NMR) shift
variables, and 16 calculated variables, namely six semiempirical molecular orbital indices, total,
polar, and nonpolar surface area, van der Waals volume of the side chain, log P, molecular
weight, and four indicator variables describing hydrogen bond donor and acceptor properties,
and side chain charge. In the present study, the data from a previous characterization of 55
AA.s from our laboratory have been extended with data for 32 additional AA.s and 14 new
descriptor variables. The new 32 AA.s were selected to represent both intermediate and more
extreme physicochemical properties, compared to the 20 coded AA.s. The new extended and
updated principal property scales, the z-scales, were calculated and aligned to previously
reported z(old)-scales. The appropriateness of the extended z-scales were validated by the use
in quantitative sequence-activity modeling (QSAM) of 89 elastase substrate analogues and in
a QSAM of 29 neurotensin analogues.

Introduction

Peptides and peptidomimetic compounds have at-
tracted considerable pharmacological interest in recent
years.1-3 Following the isolation of natural and biologi-
cally active peptides, many examples have been reported
that aim at the synthesis of analogues for pharmaco-
logical purposes. Since peptides composed of amino
acids (AA.s) coded by mRNA have limited life spans in
an organism due to their biodegradability, they are
usually less suitable for therapeutic purposes. One
possibility to circumvent this problem is to incorporate
noncoded AA.s in the design of new peptide analogues,
with possibly reduced sensitivity to biodegradation by
peptidases.4 In the case of peptidomimetics and com-
binatorial peptide libraries, noncoded AA.s will also
provide a larger span and diversity in physicochemical
properties and thereby increase the diversity of conceiv-
able compounds.

The introduction of a noncoded AA into a peptide
sequence would probably change the biological activity
of the peptide. It is of great interest to be able to model
and predict this change in activity. One way to ac-
complish this is to use quantitative sequence-activity
models (QSAM.s),5 which are crucial cases of quantita-
tive structure-activity relationships (QSAR.s). A QSAM
(or QSAR) will indicate how the change in peptide
chemistry, i.e., sequence, is correlated with the change
in biological performance, i.e., activity. It will also
indicate how to modify the sequence to achieve improved
performance. The basic assumption in QSAR is that
the biological activity (BA) within a set of compounds

is related to the structural variation of the compounds,
i.e., the BA can be modeled as a function of molecular
structure. In this context, quantitative amino acid
descriptor variables have shown to be valuable.6-10

These descriptor variables provide quantitative scales
so that each AA position in a peptide sequence can be
translated into the corresponding descriptor variables
for the actual AA. Furthermore, by applying multivari-
ate designsdesign in principal propertiessthe problem
of introducing multiple positional AA changes and
modeling the effects of such changes can be handled.11

To be able to use statistical experimental design, a
quantification of the possible modifications is needed.
This can be achieved by a parametrization of the AA.s
by a set of orthogonal quantitative descriptor scales.
This paper addresses the derivation of such updated AA
scales for 87 AA.s based on measured and theoretical
AA descriptor variables.

A high-quality QSAR should be validated, be easy
to interpret, and give reliable predictions of the activ-
ity of new compounds not originally present in the
model.12-14 Hence the nature of the chemical descriptor
variables used and the extent to which they encode the
structural features of the pertinent molecules are
important for the quality of the QSAR. In principle, the
descriptor variables should together contain physical
and chemical information of the main types of interac-
tions, such as lipophilicity, steric properties, hydrogen
bonding, and electrostatic interactions, that might be
responsible for molecular bioactivity.15-17 Since the
pioneering work of Sneath,18 who derived amino acid
descriptor variables from physicochemical semiqualita-
tive data for the 20 coded AA.s and used them in a
QSAM analysis of oxytocin-vasopressine analogues, a
number of quantitative amino acid descriptor variables
have been proposed for the 20 coded amino acids.6,19-21
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Previously, Hellberg et al. developed three AA scales,
z1-z3, for the 20 coded AA.s, for use in peptide QSAR.s.6
The scales, hereafter referred to as z(old), were calcu-
lated by principal component analysis (PCA) from a
multiproperty matrix with 29 physicochemical vari-
ables. The three resulting principal components, so-
called principal properties, are linear combinations of
the primary data and were tentatively interpreted as
reflecting lipophilicity (z1(old)), steric properties (z2(old)),
and electronic properties (z3(old)). By using only 12
physicochemical variables, Jonsson et al.20 took a first
step toward expanding these scales to encompass 35
noncoded AA.s. In this paper we present an expansion
of the amino acid principal properties. Thus, we have
used the same 12 descriptor variables as Jonsson et al.
In addition to this, 14 supplementary theoretical de-
scriptor variables have been applied, namely six semiem-
pirical molecular orbital derived variables, total, polar
and nonpolar molecular surface area, calculated log P,
and four indicator variables describing hydrogen bond-
ing donor and acceptor properties, and side chain charge
(in all, 26 descriptors). According to the current knowl-
edge, these variables will together capture lipophilic,
steric, and electronic properties of the AA.s. Further-
more, 32 new AA.s have been characterized using the
26 variables eventually forming an 87 × 26 data matrix.
This data matrix was analyzed to extract updated and
expanded (from three to five) AA scales, denoted z-
scales, for the 87 AA.s (Table 1).

Partial least squares projections to latent structures
(PLS)22,23 was used to align the extended z-scales to the
z(old)-scales previously reported for the 20 coded AA.s.6
The new z-scales can be interpreted as lipophilicity, size/
polarizability, and electronic properties of the 87 AA.s.

To explore the validity and information content in the
z-scales, they were used in two QSAM.s. The first
QSAM consists of a model of 89 synthetic peptide
substrates for the elastase enzyme. The second QSAM
is based on a series of 29 neurotensin analogues. The
models are interpreted in terms of how the physico-
chemical properties of the amino acids may be altered
in the different positions in order to enhance the
biological activity.

Methods

The characterized amino acids are presented in Table 1 and
the used variables in Table 2. The structural formulas of the
87 amino acids are presented in Chart 1 (Supporting Informa-
tion).

NMR Measurements. Seventeen of the 32 new AA.s were
commercially available from Sigma and the remaining 15
(numbers 73-87 in Table 1) were synthesized and character-
ized (with descriptors 1-12) at our department by Larsson et
al.24-26 These latter 15 were explicitly made to show chemical
properties filling gaps in the z1, z2, and z3 space, thus getting
AA.s with unique properties when compared to existing ones,
particularly to the 20 coded AA.s.

For each amino acid, three NMR spectra were recorded, at
pD 2.0, 7.0, and 12.5, and R-proton shifts were determined
according to a procedure by Jonsson et al.20 Three AA.s
(numbers 47, 50, and 71) were not sufficiently soluble in D2O,
and amino acid number 52 lacked the R-proton. This means
that it was not possible to determine the R-proton shifts for
these four AA.s. For the NMR experiments a Bruker 250 MHz
instrument was used. R-Proton shifts as well as other
characterization data are presented in Table 3 (Supporting
Information).

Thin Layer Chromatography (TLC). Each AA was
investigated in seven TLC systems. The standardized ex-
perimental details of the chromatography are given else-
where.27

Calculated Descriptor Variables. For the molecular
orbital calculations, the AM1 Hamiltonian in the SPARTAN28

molecular orbital calculation framework was used. Appropri-
ate starting geometries of the AA.s were obtained through a
molecular mechanics (force field) minimization using SYBYL,
implemented in SPARTAN. Standard bond lengths and bond
angles of L-amino acids from the SPARTAN database were
used to construct the molecules, followed by the appropriate
modifications of the side chain. The amide angles were kept
frozen, and only the side chain was allowed to rotate during
the geometry optimization. The reason for this restriction was
that in our view the calculated properties should reflect only
the structural change in the side chain. In the case of isoserine
and â-alanine, however, the angle between the R-carbon and
nitrogen was not kept constant since they lack nitrogen
coupled to the R-carbon. Also for the AA.s where the R-carbon
and nitrogen are part of a cyclic side chain (for example,
numbers 68, 83, and 87), these atoms were not frozen during
the geometry optimization. Six global descriptor variables
(representing the whole molecule) were calculated: heat of
formation (HOF), energy of the highest occupied molecular
orbital (EHOMO), energy of the lowest unoccupied molecular
orbital (ELUMO), electronegativity (EN), hardness (HA), and
polarizability (POLAR). The first three variables were directly
available from the SPARTAN output file. EN and HA were
calculated as described by Schüürmann,29 and polarizability
(POLAR) was calculated by MOPAC.30 After that the ener-
getically most favored conformation was reached with the
SPARTAN calculation; the following parameters were calcu-
lated using PCMODEL:31 total surface area (Stot), total polar
surface area (Spol), total nonpolar surface area (Snp). Ma-
cLogP was used for the calculation of log P.32

QSAM Data Sets. 1. Elastase Substrates. Elastase is
a serine protease, which is considered to participate in the
pathogenesis of some diseases, e.g., emphysema. The elastase
substrates data originates from a study of 89 synthetic peptide
substrates of porcine pancreatic elastase, reported by Nomizu
et al.33 The general formula of the synthetic substrate is
expressed as Suc-x1 -x2 -Ala-pNa (Suc, succinyl; pNa, p-
nitroanilide). The 89 peptides were modified in two positions,
x1 and x2.

Amidolytic activity by elastase for each peptide substrate
was assayed by monitoring the production rate of p-nitro-
aniline spectrophotometrically, and the kinetic parameters kcat

and kcat/Km were determined. Km relates to the binding of the
substrate to the enzyme and kcat to the preparation of acylated
enzyme and the release of p-nitroaniline from the enzyme.
These two parameters were used as y-variables (responses)
in the QSAM analysis. All variables were scaled to unit
variance prior to the QSAM. The used sequences and activity
data from Nomizu et al. are summarized in Table 4 (Support-
ing Information).

2. Neurotensin Analogues. Neurotensin (NT) is a tri-
decapeptide found to be important in the mammalian central
nervous system with several effects, i.e., sedation and muscle
relaxation. A set of 29 NT(8-13) peptide receptor analogues,
varied in three positions (positions 8, 9, and 11), compiled from
Cusack et al.,34,35 was here used in a QSAM. The original NT-
(8-13) peptide has the sequence Arg8-Arg9-Pro10-Tyr11-Ile12-
Leu13, where the numbering originates from the native NT
sequence. The binding potency at the human neurotensin
receptor (hNTR) and the rat neurotensin receptor (rNTR) were
evaluated as equilibrium dissociation constants (Kd values)
from radioligand binding assays. The 10logarithm of (1/Kd) for
these two receptors, hNTR and rNTR, were used as y-variables
in the QSAM analysis. The three varied amino acid positions
were described by the five z-scales. The configuration of the
R-carbon of the amino acids in position 1 and 2 was assigned
an indicator variable with the value of 1 if in D-configuration
and a value of 0 if in L-configuration. In total 17 variables
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Table 1. Descriptor Scales for the Characterized Amino Acids

no. abbrev namea z1 z2 z3 z4 z5

1 Ala alanine 0.24 -2.32 0.60 -0.14 1.30
2 Arg arginine 3.52 2.50 -3.50 1.99 -0.17
3 Asn asparagine 3.05 1.62 1.04 -1.15 1.61
4 Asp aspartic acid 3.98 0.93 1.93 -2.46 0.75
5 Cys cysteine 0.84 -1.67 3.71 0.18 -2.65
6 Gln glutamine 1.75 0.50 -1.44 -1.34 0.66
7 Glu glutamic acid 3.11 0.26 -0.11 -3.04 -0.25
8 Gly glycine 2.05 -4.06 0.36 -0.82 -0.38
9 His histidine 2.47 1.95 0.26 3.90 0.09

10 Ile isoleucine -3.89 -1.73 -1.71 -0.84 0.26
11 Leu leucine -4.28 -1.30 -1.49 -0.72 0.84
12 Lys lysine 2.29 0.89 -2.49 1.49 0.31
13 Met methionine -2.85 -0.22 0.47 1.94 -0.98
14 Phe phenylalanine -4.22 1.94 1.06 0.54 -0.62
15 Pro proline -1.66 0.27 1.84 0.70 2.00
16 Ser serine 2.39 -1.07 1.15 -1.39 0.67
17 Thr threonine 0.75 -2.18 -1.12 -1.46 -0.40
18 Trp tryptophan -4.36 3.94 0.59 3.44 -1.59
19 Tyr tyrosine -2.54 2.44 0.43 0.04 -1.47
20 Val valine -2.59 -2.64 -1.54 -0.85 -0.02
21 Acpa R-aminocaprylic acid -4.38 1.92 2.14 -2.61 -4.93
22 Aecys (S)-2-aminoethyl-L-cysteine‚HCl 3.03 2.60 0.50 2.65 -1.55
23 Afa aminophenylacetate -3.51 2.93 2.94 1.17 1.22
24 Aiba R-aminoisobytyric acid -1.33 -2.80 -0.61 -0.55 0.40
25 Aile alloisoleucine -4.09 -1.28 -1.40 -0.63 0.94
26 Alg L-allylglycine -2.31 -1.35 -0.05 0.05 1.25
27 Aba R-aminobutyric acid -1.22 -2.44 -0.38 -0.51 0.65
28 Aphe p-aminophenylalanine -0.62 3.28 -0.11 3.24 -1.51
29 Bal â-alanine 2.16 -6.54 -4.46 -2.66 -5.93
30 Brphe p-bromophenylalanine -5.62 3.18 0.29 0.54 -1.10
31 Cha cyclohexylalanine -6.26 0.30 -2.58 -0.67 1.01
32 Cit citrulline 1.31 1.47 -2.76 -2.10 0.42
33 Clala â-chloroalanine -0.66 0.30 2.65 -0.47 1.92
34 Cle cycloleucine -2.95 -2.16 -1.66 -0.65 0.19
35 Clphe p-chlorophenylalanine -5.31 2.66 0.99 0.02 -1.76
36 Cya cysteic acid 4.20 3.59 3.76 -5.09 -1.36
37 Dab 2,4-diaminobutyric acid 3.69 -0.53 -0.24 1.03 -0.15
38 Dap 2,3-diaminopropionic acid 4.34 -0.54 0.96 1.04 0.24
39 Dhp 3,4-dehydroproline -1.24 0.40 2.50 1.48 1.53
40 Dhphe 3,4-dihydroxyphenylalanine -0.45 3.32 -0.07 -0.33 -1.95
41 Fphe p-fluorophenylalanine -4.58 2.26 1.28 -0.70 -1.58
42 Gaa D-glucoseaminic acid 4.90 3.91 -1.98 -4.18 0.89
43 Hag homoarginine 2.70 3.06 -4.15 2.32 -0.46
44 Hlys δ-hydroxylysine‚HCl 3.98 1.67 -2.51 0.32 0.08
45 Hnvl DL-â-hydroxynorvaline -0.85 -1.08 -1.10 -1.73 -0.04
46 Hog homoglutamine 1.33 1.19 -2.14 -1.61 0.59
47 Hoph homophenylalanine -5.86 2.95 0.37 1.03 0.32
48 Hos homoserine 0.93 -0.71 -0.01 -1.58 0.94
49 Hpr hydroxyproline -0.24 2.27 2.47 0.18 2.94
50 Iphe p-iodophenylalanine -6.23 6.88 3.01 1.52 1.05
51 Ise isoserine 3.78 2.82 2.55 0.27 2.96
52 Mle R-methylleucine -5.40 -2.07 -2.86 -1.15 -0.27
53 Msmet DL-methionine-s-methylsulfoniumchloride 1.22 1.89 -0.91 3.75 -1.25
54 1Nala 3-(1-naphthyl)alanine -5.67 6.31 3.43 3.51 -0.47
55 2Nala 3-(2-naphthyl)alanine -6.48 6.37 2.81 3.02 -0.49
56 Nle norleucine (or 2-aminohexanoic acid) -4.33 -1.30 -1.54 -0.85 0.74
57 Nmala N-methylalanine -1.30 -3.13 -0.65 0.04 -0.16
58 Nva norvaline (or 2-aminopentanoic acid) -3.08 -1.76 -0.98 -0.68 0.87
59 Obser O-benzylserine -5.20 2.54 -0.60 0.32 -0.48
60 Obtyr O-benzyltyrosine -7.71 7.33 -1.81 2.39 0.11
61 Oetyr O-ethyltyrosine -5.62 3.33 -0.75 0.71 -1.17
62 Omser O-methylserine -1.02 -0.30 0.36 -0.97 1.70
63 Omthr O-methylthreonine -1.75 -1.63 -1.55 -1.60 -0.20
64 Omtyr O-methyltyrosine -4.28 3.05 -0.03 0.72 -1.11
65 Orn ornithine 3.09 0.17 -1.85 1.46 0.42
66 Pen penicillamine 0.15 -0.76 0.42 0.67 -2.79
67 Pga pyroglutamic acid -3.56 2.88 2.82 1.09 3.10
68 Pip pipecolic acid -2.66 -2.29 -1.57 0.20 -0.39
69 Sar sarcosine 0.30 -3.55 -0.09 0.29 -0.35
70 Tfa 3,3,3-trifluoroalanine -1.47 1.11 3.66 -4.70 2.13
71 Thphe 6-hydroxydopa 1.29 5.13 0.89 -0.93 -2.06
72 Vig L-vinylglycine -0.81 1.17 3.54 1.20 3.43
73 Aaspa (-)-(2R)-2-amino-3-(2-aminoethylsulfonyl)propanoic acid dihydrochloride 5.35 6.24 2.92 -1.44 -2.26
74 Ahdna (2S)-2-amino-9-hydroxy-4,7-dioxanonanoic acid -1.40 3.33 -2.51 -2.81 1.96
75 Ahoha (2S)-2-amino-6-hydroxy-4-oxahexanoic acid 0.05 1.17 -0.74 -1.96 1.64
76 Ahsopa (-)-(2R)-2-amino-3-(2-hydroxyethylsulfonyl)propanoic acid 3.01 5.82 3.85 -3.86 -1.72
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were used to describe each of the 29 neurotensin analogues.
All variables were scaled to unit variance prior to the
QSAM. The sequences for the NT analogues together with
the binding potencies are presented in Table 5 (Supporting
Information).

Partial Least Squares Projections to Latent Struc-
tures (PLS) and Principal Component Analysis (PCA).
PLS correlates dependent variables Y, to a predictor matrix
X.22,23 PLS calculates latent variables (ta) as linear combina-
tions of X so that they well approximate X and well correlate
with Y. Since PLS is a projection method, it can handle
collinear data having many more variables (here sequence
descriptor variables, K) than observations (here sequences, N),
as long as the resulting components (A) are few compared to
N. The result is a stable model of the correlation structure
between X and Y. The predictor variables can be expanded
by their squared and/or cross terms if desired, to account for
curvature and/or interaction in the relationship. The statisti-
cal significance of the PLS model is determined by cross-
validation.36,37 The predictive validity may also be checked
with a combination of cross-validation and a response permu-
tation test.38,39 SIMCA-P 3.0 was used for the PLS analysis.40

In peptide QSAMs, the structural change within a series of
peptides is described by the five z-values in each varied amino
acid position, which gives a peptide descriptor variable matrix
X. The relation between the biological activity, y, and the
peptide descriptor variable matrix X is then modeled by PLS.
Alternatively, the structural change in each amino acid
position in the peptide can be described by all 26 descriptor

variables (here referred to as the whole matrix description)
constituting the basis for the five z-scales.

PCA41 summarizes one data matrix and is conceptually
similar to PLS. The major difference lies in that PCA cal-
culates latent vectors for only one data matrix (e.g., X). These
latent vectors are the directions in space that have the largest
variation, and represent the data matrix as well as possible.

Updating the z-ScalessEstimation Procedures. 1.
General Considerations. In the work of Hellberg et al.,
three continuous scales, the z-scales, were introduced as
descriptors for peptide QSAM. These scales, in the present
paper referred to as z(old)-scales, have shown to work well in
a number of peptide-QSAM applications. However, these
scales were initially restricted to the 20 coded amino acids. In
this work, we have extended and enriched the multivariate
description of the amino acids. Because we want to express
this new multiproperty matrix in terms of the new, updated
AA scales, we decided to include also a fourth and fifth scale
and assess their relevance.

There exist several alternatives for calculating the updated
z-scales. We here discuss some of them and motivate why we
selected one particular alternative.

2. PLS-Based Estimation. Estimation of z1-z3. In this
approach the 20 coded AA.s are used as the training set. The
X matrix comprises the 26 descriptor variables and the Y
matrix contains the three z(old)-scales of Hellberg et al. PLS
is then used to relate X and Y, and predicted z-scales are then
obtained for the 67 noncoded AA.s. The aim of this PLS
calibration is to calculate the latent variables so that they are

Table 1 (Continued)

no. abbrev namea z1 z2 z3 z4 z5

77 Ahspa (-)-(2R)-2-amino-3-(2-hydroxyethylsulfanyl)propanoic acid -0.43 1.61 0.66 -0.21 -1.40
78 Ahtda (2S)-2-amino-12-hydroxy-4,7,10-trioxadodecanoic acid -2.72 5.23 -4.36 -3.62 2.07
79 Dadna (2S)-2,9-diamino-4,7- dioxanonanoic acid 2.02 3.79 -3.05 0.06 0.70
80 Datda (2S)-2,12-diamino-4,7,10- trioxadodecanoic acid 0.87 6.12 -4.66 -0.70 1.14
81 Dfnl (S)-5,5-difluoronorleucine -4.24 -0.29 -1.66 -2.94 1.01
82 Dfnv (S)-4,4-difluoronorvaline -3.04 0.55 0.58 -1.99 2.17
83 Dtca (3R)-1-1-dioxo-[1,4]thiaziane-3-carboxylic acid 0.31 3.32 3.48 -2.87 -2.42
84 Hfnl (S)-4,4,5,5,6,6,6-heptafluoronorleucine -4.22 3.19 1.81 -8.32 -0.96
85 Pfnl (S)-5,5,6,6,6-pentafluoronorleucine -5.03 0.86 -1.61 -7.17 -0.68
86 Pfnv (S)-4,4,5,5,5-pentafluoronorvaline -3.30 2.22 2.59 -6.36 0.16
87 Tca (3R)-1,4-thiazinane-3-carboxylic acid -2.51 -0.54 0.58 1.61 -1.82
a Names in italics correspond to new amino acids experimentally characterized in this paper.

Table 2. Used Variables

no. descriptor variables abbrev

1 molecular weight (g/mol) MW
2 TLC % migration on silica gel, ethanol/water (70/30)a TL1
3 TLC, silica gel, 1-butanol/acetic acid/water (40/10/10) TL2
4 TLC, silica gel, phenol/water (75/25) TL3
5 TLC, silica gel, butanone/pyridine/acetic acid/water (70/15/2/15) TL4
6 TLC, cellulose, ethanol/water (70/30) TL5
7 TLC, cellulose, pyridine/isoamyl alcohol/water (35/30/30) TL6
8 TLC, kiselguhr, butanone/water/phenol/acetone/ethanol (1/1) TL7
9 side chain van der Waals volume (cm3/mol) vdW

10 NMR R-proton shift at pD ) 2 (ppm) NM1
11 NMR R-proton shift at pD ) 7 (ppm) NM7
12 NMR R-proton shift at pD ) 12.5 (ppm) NM12
13 10log(octanol/water) partition coefficient logP
14 energy of highest occupied molecular orbital (eV) EHOMO
15 energy of lowest unoccupied molecular orbital (eV) ELUMO
16 heat of formation (kcal) HOF
17 R-polarizability (Å3) POLAR
18 absolute electronegativity (eV) EN
19 absolute hardness (eV) HA
20 total accessible molecular surface area (log Å2) Stot
21 polar accessible molecular surface area (log Å2) Spol
22 nonpolar accessible molecular surface area (log Å2) Snp
23 number of hydrogen bond donors HDONR
24 number of hydrogen bond acceptors HACCR
25 indicator of positive charge in side chain Chpos
26 indicator of negative charge in side chain Chneg

a All mobile phase compositions are given in volume parts except for variable 4 for which weight composition is given.
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aligned with the z(old)-scales and thereby the interpretation
of the z(old)-scales is retained. However, these three scales
may be too few to account for all information included in the
present X matrix, since both new amino acids and descriptor
variables are included. Indeed, two additional scales were
found significant when computed by means of PCA on the
orthogonalized residual X matrix for all 87 AA.s. This residual
matrix is the result after the information of z1-z3 has been
removed from the original X matrix, for details see below. The
five resulting scales are referred to as the z-scales in Table 6.

A second PLS calibration was performed with the 20 coded
AA.s as training set, the 26 descriptor variables as X but with
only z1(old) and z2(old) from Hellberg as Y. A subsequent PCA
on the residual matrix from this PLS calibration resulted
in three additional scales (referred to as the 2z3t-scales in
Table 6).

Estimation of z4 and z5. With the extension of our data
to new descriptor variables and new AA.s, we have found it of
interest to extract a few additional scales for validation in
peptide QSAM.s. These scales were calculated from the resid-
ual matrix after prediction of z1-z3. Multiple linear regression
(MLR) was used to find the information in the 26 physico-
chemical descriptor variable matrix that is related to z1-z3.
MLR modeling with z1-z3 as predictor variables (X) and each
variable in the physicochemical descriptor variable matrix
(centered and scaled to unit variance) as dependent variable
y, were computed. This gave a residual vector, e, for each
descriptor variable, which is orthogonal to z1-z3, and the
coefficients, h, in eq 1.

A PCA on the residual matrix E, formed by the 26 e vectors,
was then calculated and the first and second principal
component score vectors gave z4 and z5. More details are given
in the Supporting Information.

3. PCA-Based Estimation. PCA of the whole set of 87
AA.s: This approach corresponds to a straightforward PCA
of the 87 × 26 descriptor matrix. Here each main type of
amino acid (coded/noncoded) will influence the PC model. The
resulting scores are based on the largest amount of chemical
and structural information, and might therefore be more
“stable” than other versions of the z-scales. These five
principal property scales are referred to as PP87 in Table 6.

4. Selection of One Set of Scales. In preliminary trials
we have applied the different scales, in five peptide QSAM
examples and compared their performance on the basis of
standard error of prediction (SDEP), i.e., ((yobserved - ypredicted)2/
n)1/2, for the external test set (n ) number of test objects). The
SDEP results for the different sets of scales are presented in
Table 6. Of these approaches we finally preferred the PLS
calibration versus z1(old)-z3(old) for several reasons: (i) It gives
resulting scales for the 20 coded AA.s most consistent with
previously published values,6 which also have been extensively
used in QSAM.s. (ii) The scales are clear and interpretable.
(iii) They perform the best in the validation of the different
sets of scales (see Table 6).

Results

Estimated z-Scales. PLS was used to align the
extended z-scales to the z(old)-scales previously reported
by Hellberg et al.,6 with the 20 coded AA.s comprising
the training set. The z(old)-scales were used as y
variables and the here reported physicochemical char-
acterization with 26 variables (k ) 26) was used as x
variables. The PLS computation resulted in a five-
dimensional model explaining 92% of the sum of squares
in the X matrix and 95% (84% cross-validated) of the
sum of squares in the Y matrix. This PLS model formed
the basis for the prediction of the z1-z3-scales for the
67 noncoded AA.s. The z4- and z5-scales were calculated
using PCA on the residual X matrix following the
removal of the information related to z1-z3. The
information related to z1-z3 corresponded to 68% of sum
of squares of the original centered and scaled X matrix.
The additional z4- and z5-scales accounted for an ad-
ditional 13% and 6%, respectively, of the initial sum of
squares of the original X matrix. The correlation
coefficients between the z1(old)-z3(old) and the new z1-
z3-scales were 0.98, 0.95 and 0.92, respectively. In
Figure 1a-c (Supporting Information) the old z are
plotted against the new updated ones. The z-scales are
interpreted in detail in section 4 and presented in Table
1 and in Figures 2-4.

Peptide QSAM for 89 Elastase Substrates. To
validate the z-scales they were first used in a QSAM of
89 synthetic peptide substrates for porcine pancreatic
elastase, reported by Nomizu et al.33 Recall that only
two AA positions were varied.

Initial modeling showed that z5 was not of relevance,
hence only z1-z4 were used. The best model was
obtained when the x variables were expanded with four
quadratic terms (i.e. (z1pos1)2, (z2pos1)2, (z1pos2)2, (z2pos2)2)
and the five cross-terms (i.e. (z1×z2) and (z1×z4) of
positions 1 and 2 and (z2×z4) of position 1). Hence, the
X matrix consisted of 17 x variables and 89 objects. PLS
was applied to calculate a reference QSAM relating the
peptide sequence, X, to the logarithm of the two biologi-
cal activities log(kcat) and log(kcat/Km), Y. This resulted
in a model with four latent variables and an explained
sum of squares in Y (R2Y) of 0.83. The corresponding
predicted sum of squares in Y (Q2Y) according to cross-
validation was 0.77. The relationship between observed
and calculated activity for the reference QSAM is
visualized in Figure 5a and b.

1. Model Validation. The predictive power of the
elastase peptide QSAM model was further validated in
the following way: A D-optimal42 subset of 32 peptides

Table 6. SDEPa of Different Sets of Scales

peptide QSAM data sets

scale pentab angiotensinc elastased kcat elastased kcat/Km bittere SUMSQ rows

z(1-5) 0.48 0.48 0.31 0.34 0.31 0.77
z(1-4) 0.39 0.51 0.23 0.31 0.31 0.66
z(1-3) 0.38 0.54 0.24 0.33 0.31 0.70
2z3t(1-5) 0.56 0.73 0.33 0.38 0.32 1.20
2z3t(1-4) 0.53 0.71 0.37 0.42 0.32 1.20
2z3t (1-3) 0.78 0.72 0.39 0.41 0.31 1.54
PP87(1-5) 0.69 1.08 0.3 0.37 0.31 1.97
PP87(1-4) 0.63 0.53 0.25 0.29 0.31 0.92
PP87(1-3) 0.45 0.59 0.23 0.30 0.30 0.78
whole matrix description 0.43 0.53 0.25 0.32 0.24 0.69
a Standard deviation of predicted value. b Dataset from ref 20. c Dataset from ref 44. d Dataset from ref 33. e Dataset from ref 20.

e ) y - (z1h1) - (z2h2) - (z3h3) (1)
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was selected as a training set (peptide numbers 1-32
in Table 4, Supporting Information). The D-optimal
training set was based on a selection from the peptide
space described by the z-scales and computed with the
software MODDE43 assuming a quadratic model. On
the basis of modeling 32 peptides, with a resulting R2Y
) 0.93 and Q2Y ) 0.78, the biological activity of the 57
remaining peptides (validation set) was predicted. The
validation set consists of peptide numbers 33-89 in
Table 4 (Supporting Information). The standard error
of prediction (SDEP) is a measure of the predictive
power of the QSAM. For the test set these are SDEP-
(log(kcat)) ) 0.23, and SDEP(log(kcat/Km)) ) 0.30. These
values compare well with the training set values (based
on cross-validation), SDEP(log(kcat)) ) 0.29, and SDEP-
(log(kcat/Km)) ) 0.30, indicating a QSAM of sound
predictive power. In Figure 6a and b, the observed log-
(kcat) and log(kcat /Km) are plotted versus the predicted

values for the test set and calculated values for the
training set. Note the similarity with the reference
model based on all 89 objects, Figure 5a and b.

Another way to investigate whether the predictive
capacity of a model could be obtained by chance, is to
permute the y values a number of times and compute a
QSAR model for each permutation.38 Twenty permuted
models were computed which gave the resulting R2

intercepts of 0.05 (kcat) and 0.04 (kcat/Km), and the Q2

intercepts were -0.04 (kcat) and -0.05 (kcat/Km), see
Figure 7a and b (Supporting Information). The satis-
factory results from the permutation testing demon-
strate that the good predictive capacity of the QSAM
model of elastase substrates is not influenced by chance
factors.

Interpretation of the Reference QSAM. The
magnitude and sign of the PLS regression coefficients
plotted in Figure 8 revealed a complex pattern with
large contributions to the biological activity from linear,
square and cross-terms of the z-scales. These suggest

Figure 2. (a) Scatter plot of z2-scale versus z1-scale for the
87 amino acids. Large lipophilic AA.s can be found in the upper
left quadrant. Polar, hydrophilic AA.s are situated in the upper
right quadrant. New AA.s in this study are encircled. For
numbering of the AA.s, see Table 1. (b) PLS weights plot of
w*c[2] versus w*c[1]. The lipophilicity variables are dominat-
ing w*c[1] and steric bulk/polarizability variables contribute
to w*c[2]. The 26 variables are denoted as in Table 2.

Figure 3. (a) Scatter plot of the z4-scale versus the z3-scale.
Amino acids are marked in accordance with Table 1. (b) The
first PCA loading q[1] (complementary to z4) plotted versus
the PLS weight w*c[3] (complementary to z3). The NMR
variables and ELUMO, dominate the w*c[3] while EN and
HOF explore the q[1] vector. Variable abbreviations as in
Table 2.
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how the four z-scales in both positions should be
changed for a higher biological activity. However, since
these values cannot be varied independently of each
other, due to the discrete nature of the amino acids, we
have made a compilation of feasible combinations of
amino acids in the two positions and predicted their
activity. Many of the studied new combinations do not
fit well to the model, which is revealed by their large x
residual standard deviations. However, Lys, Arg, or
Msmet in position 1 and Vig in position 2 are interesting
alternatives. Insertion of Lys-Vig combination in the
QSAM gives a predicted log(kcat) of 2.98 and fits fairly
well into the model.

Peptide QSAM for 29 Neurotensin Analogues.
In the second QSAM, 29 neurotensin analogues were
modeled.34,35 Qualitative variables describing D- or
L-amino acids together with the five z-scales were used
to describe the amino acid variation of the neurotensin
(NT) analogues. In total 17 x variables were used to
describe the three varied positions in the peptide
sequences. The resulting five-component PLS model

explained 94% of the sum of squares in Y (78% cross-
validated), using 78% of X. Here, the model was
validated by cross-validation and permutation of Y,
which shows significant predictive capability for the
original QSAM, and Q2 intercepts that are satisfactory
low; -0.17 for the 1/Kd(hNTR) and -0.1 for the 1/Kd-
(rNTR), see Figure 9a and b (Supporting Information).
In Figure 10a and b, the observed binding potencies are
plotted against the corresponding calculated values for
the hNTR and rNTR, respectively. We did not subdivide
the data set into separate training and test sets because
of scarcity of observations (peptides).

Interpretation of the QSAM of the Neurotensin
Analogues. This concerns the influence of various
amino acids with respect to their binding potency to the
NT receptors. First, the model coefficients for hNTR
in Figure 11 indicates the unfavorable influence of
D-amino acids in position 9 (seven out of 29 peptides
have a D-amino acid in position 9). Furthermore, high
values for z1 in position 11 and low values for z5 in
position 11 are favorable. At the same time z5 in
position 9 should be low to give high binding potency.
We can now ask what kinds of AA.s correspond to these
properties and how a new peptide should be synthesized
to have enhanced activity. In position 11, the model
indicates that a side chain with electron-donating

Figure 4. (a) Scatter plot of the AA z5-scale versus the z1-
scale. The 87 AA.s are numbered as in Table 1. (b) Variable
loading plot of the PCA loading q[2] (complementary to z5)
versus the first PLS weight w*c[1] (complementary to z1).
Notation as in Table 2.

b

a

Figure 5. (a) Observed log(kcat) plotted versus the correspond-
ing calculated values from the reference QSAM of all 89
elastase substrates. (b) Observed log(Kcat/Km) plotted versus
the calculated values for the reference QSAM of elastase
substrates.
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atoms, such as sulfur or oxygen, is favorable. This
corresponds to amino acids such as glutamic acid,
cysteic acid, and serine. In position 9 an amino acid
with a large side chain and/or electron-donating atoms

is favorable, e.g., tyrosine and homoarginine. An aro-
matic or an aliphatic amino acid is favored in position
8, e.g., phenylalanine, leucine, or isoleucine. New pep-
tides predicted to exhibit enhanced potency are, for
example, [Ile8, Hag,9 Sar11]NT(8-13) and [Leu8, Tyr9,
Ser11]NT(8-13). These new peptides have predicted
potencies for 10log(1/Kd(hNTR)) of 2.26 and 3.58, respec-
tively. Due to the unique properties for these peptides,
the residuals in the QSAM are high and the exact value

b

a

Figure 6. Validation QSAM of elastase substrates based on
a D-optimal training set. (a) Relationship between the observed
log(kcat) values and those predicted/calculated by the model.
Filled circles correspond to the test set peptides and triangles
correspond to the work set peptides. (b) Observed log(kcat/Km)
plotted versus the corresponding predicted/calculated values
for the validation model. Filled circles correspond to the test
set peptides and triangles correspond to the work set peptides.

Figure 8. PLS regression coefficients of the z-scales used in
the QSAM of 89 elastase substrates. The coefficients are shown
for the kcat variable. S stands for “squared” term and C stands
for “crossed” terms. Underscore, _1 or _2, denote the position
in the peptide.

b

a

Figure 10. (a) Observed log(1/Kd(hNTR)) plotted versus the
calculated values of the QSAM of 29 neurotensin analogues.
(b) Observed log(1/Kd(rNTR)) plotted versus the calculated
values of the neurotensin QSAM.

Figure 11. PLS regression coefficients of the z-scales used
in the QSAM of 29 neurotensin analogues. The coefficients are
shown for the hNTR-variable. S ) squared term, C ) crossed
terms, underscore _8, _9, _11 denote the AA position in the
peptide.
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of the predictions should naturally be regarded with
some caution. To investigate these predictions, it is
recommended that the direction in AA property space
indicated by the QSAM is adopted. This can be achieved
by constructing a fractional factorial design or D-optimal
design in the z-scales in this region.11,14,38,44,45

Discussion

The approach of describing each amino acid position
in peptides and proteins in terms of quantitative scales
goes back to the derivation of substituent scales by
multivariate analysis.46-49 We have presented here a
way to calculate new scales for AA.s. These AA-scales
continue the physical-organic-chemical tradition of
Hammett,50 Taft,51 and Hansch52 and has the same
theoretical foundation in terms of similarity related
modeling.46-49 One benefit with the new z-scales is that
they are interpretable in terms of physicochemical
properties.

The similarities and differences in physicochemical
properties between the 87 AA.s are illustrated by score
plots of the z-scales (Figures 2a, 3a, and 4a). The
complementary loading plots (Figures 2b, 3b and 4b)
reveal information of which variables that contribute
to each z-scale. In the upper left quadrant in Figure
2a, large and lipophilic amino acids are situated, e.g.
number 60, O-benzyltyrosine. By moving to the right
in this plot, the amino acids become more hydrophilic,
and AA.s with large and polar side chains are situated
in the upper right corner in Figure 2a. The first scale
(z1) can be interpreted as a lipophilicity scale, since the
TLC variables, log P, and nonpolar surface area (Snp)
have large positive loadings and polar surface area (Spol)
in combination with the number of proton accepting
electrons in the side chain (HACCR) have negative
loadings along the w*c[1] vector (see Figure 2b). Note
that the z1(old) variable has a negative loading weight
in w*c[1] in Figure 2b. Hence, a large negative value
of z1 corresponds to a lipophilic amino acid, and a large
positive z1 value corresponds to a polar, hydrophilic
amino acid.

AA.s with a negative z2 value, have low molecular
weight and small surface area, and are situated in the
lower part of Figure 2a. The second scale (z2) can be
viewed as summarizing steric bulk/polarizability, since
molecular weight (MW), van der Waals volume (vdW),
total surface area (Stot) and polarizability (POLAR)
have the largest contribution to z2, see Figure 2b.

The third scale, z3, mainly describes polarity (Figure
3a). It has negative loadings for the electrophilicity
(ELUMO) and positive loadings for NMR at pD 1 and 7
and electronegativity (EN), visualized in Figure 3b.

The fourth and fifth scales, z4 and z5, are more
difficult to interpret. They relate to such properties as
electronegativity (EN), heat of formation (HOF) and
electrophilicity (ELUMO), hardness (HA), and NMR at
pD ) 1 and 7. See loading plots in Figures 3b and 4b.

Most peptide QSAMs are dominated by changing the
steric bulk and lipophilicity properties of AA.s. This is
unfortunate and may result in an ignorance of possibly
important electronic and polar effects of AA.s. Specific
peptide-enzyme interactions often have a more polar
and electronic character. Hence, we find it important
to report the derivation and use of the z4- and z5-scales.

The use of the fourth and fifth scales needs to be further
studied and they should be used in the preliminary
analysis of a QSAM to examine if polar and electronic
effects influence the system under investigation.

An inspection of the residuals of the model in X after
that the z1-z5-scales have been extracted, shows that
no AA has exceptionally large residual standard devia-
tions(data not shown). The AA.s numbers 67 (pyro-
glutamic acid), 71 (6-hydroxy-dopa), and 84 (heptafluo-
ronorleucine) have, however, moderately larger residual
standard deviation compared to the others. Variables
contributing to the residuals of these objects are heat
of formation (HOF), electronegativity (EN) and NMR
at pD ) 12 for AA number 67 and electrophilicity, EN
for AA number 71 and HOF for AA number 84. These
AA.s have somewhat unusual side chains, e.g., a trihy-
droxylated benzene-ring (no 71) and a heptafluorinated
side chain (number 84). Thus, the analysis of the
residuals provides a tool for detecting outliers and for
determining which variables that are causing this
behavior.

The principles described here represent a fast and
reproducible methodology for quantifying physicochem-
ical properties of AA.s. The new AA.s are well distrib-
uted within the amino acid property space, as shown
in Figures 2a, 3a, and 4a, where the coded AA.s are
numbers 1-20, and many of the noncoded (no 21-87)
have properties which are different from the coded ones.
Furthermore, both more hydrophilic (e.g., number 42),
larger and more lipophilic (e.g., number 50) AA.s have
been better mapped in relation to the 20 coded AA.s.

A procedure for the estimation of z-scales for new AA.s
not listed in the present collection, together with neces-
sary parameters (Tables 7-9), is described in the
Supporting Information. Since some of the x variables
that describe lipophilicity are highly correlated, some
of these might be possible to omit in the estimation of
the z scales (see Figure 2b). If desired, from the TLC
variables TL1, TL4, and TL7 may be chosen to be
measured. If many variables are systematically omit-
ted, it might be better to perform a target rotation.53

Here a PLS model is computed with the X matrix
consisting of the reduced number of variables and all
87 AA.s in this collection, and z1-z5 as Y. The z-scales
for the new AA.s may then be predicted by this model.

In conclusion, we here present new and extended AA
z-scales for 87 AA.s, including the 20 coded AA.s and
some interesting AA.s explicitly synthesized by Larsson
et al.24-26 to have side chains with unique properties.
The new scales have been tentatively interpreted as
quantitatively measuring lipophilicity, size and polarity
of the AA side chain. We have also illustrated their
validity in two peptide QSAM examples. The z-scales
are also suitable for the auto-cross-covariance ap-
proach,54 where peptide/protein sequences of different
lengths can be compared and modeled. The scales can
also be used as design variables in peptide design11,44,45,55

and for construction of combinatorial libraries that
effectively span the property space.56,57 When a more
extensive description of AA properties in a QSAM model
is needed, the whole characterization matrix may be
used in combination with the z-scales.
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(54) Sjöström, M.; Rännar, S.; Wieslander, Å. Polypeptide Sequence
Property Relationships in Esceria coli based on Auto Cross
Covariances. Chemometr. Intell. Lab. Syst. 1995, 29, 295-305.
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